4,068 research outputs found

    The Economic Interest Requirement in the Per Se Analysis of Tying Arrangements: A Worthless Inquiry

    Get PDF

    Electron Parallel Closures for Arbitrary Collisionality

    Get PDF
    Electron parallel closures for heat flow, viscosity, and friction force are expressed as kernel-weighted integrals of thermodynamic drives, the temperature gradient, relative electron-ion flow velocity, and flow-velocity gradient. Simple, fitted kernel functions are obtained for arbitrary collisionality from the 6400 moment solution and the asymptotic behavior in the collisionless limit. The fitted kernels circumvent having to solve higher order moment equations in order to close the electron fluid equations. For this reason, the electron parallel closures provide a useful and general tool for theoretical and computational models of astrophysical and laboratory plasmas

    Ion Parallel Closures

    Get PDF
    Ion parallel closures are obtained for arbitrary atomic weights and charge numbers. For arbitrary collisionality, the heat flow and viscosity are expressed as kernel-weighted integrals of the temperature and flow-velocity gradients. Simple, fitted kernel functions are obtained from the 1600 parallel moment solution and the asymptotic behavior in the collisionless limit. The fitted kernel parameters are tabulated for various temperature ratios of ions to electrons. The closures can be used conveniently without solving the kinetic equation or higher order moment equations in closing ion fluid equations

    Electron Heat Flow Due to Magnetic Field Fluctuations

    Get PDF
    Radial heat transport induced by magnetic field line fluctuations is obtained from the integral parallel heat flow closure for arbitrary collisionality. The parallel heat flow and its radial component are computed for a single harmonic sinusoidal field line perturbation. In the collisional and collisionless limits, averaging the heat flow over an unperturbed surface yields Rechester-Rosenbluth like formulae with quantitative factors. The single harmonic result is generalized to multiple harmonics given a spectrum of small magnetic perturbations. In the collisionless limit, the heat and particle transport relations are also derived. © 2016 IOP Publishing Ltd

    Moment-Fourier approach to ion parallel fluid closures and transport for a toroidally confined plasma

    Full text link
    A general method of solving the drift kinetic equation is developed for an axisymmetric magnetic field. Expanding a distribution function in general moments a set of ordinary differential equations are obtained. Successively expanding the moments and magnetic-field involved quantities in Fourier series, a set of linear algebraic equations is obtained. The set of full (Maxwellian and non-Maxwellian) moment equations is solved to express the density, temperature, and flow velocity perturbations in terms of radial gradients of equilibrium pressure and temperature. Closure relations that connect parallel heat flux density and viscosity to the radial gradients and parallel gradients of temperature and flow velocity, are also obtained by solving the non-Maxwellian moment equations. The closure relations combined with the linearized fluid equations reproduce the same solution obtained directly from the full moment equations. The method can be generalized to derive closures and transport for an electron-ion plasma and a multi-ion plasma in a general magnetic field.Comment: 25 pages, 9 figure
    • …
    corecore